Jump to content

Recommended Posts

Posted

Hey, anyone got advice how to get rid of some serious lactic acid build-up? Went to the physio a while back, who recommended regular massage and magnesium supplement. However as i train harder, i get stuck again.. Should i take more magnesium? Something different?

Posted

IDEAS

 

Passive recovery -

Arnica oil, regular rub down, gentle to medium pressure..

Foam roller at gym, using your weight and iron out those areas, so to speak.

 

Active recovery -

spin with little or no resistance (cool down session after ride or the evening after a morning ride)

Posted

Why does lactic acid build up in muscles? And why does it cause soreness?

Stephen M. Roth, a professor in the department of kinesiology at the University of Maryland, explains.

 

As our bodies perform strenuous exercise, we begin to breathe faster as we attempt to shuttle more oxygen to our working muscles. The body prefers to generate most of its energy using aerobic methods, meaning with oxygen. Some circumstances, however, --such as evading the historical saber tooth tiger or lifting heavy weights--require energy production faster than our bodies can adequately deliver oxygen. In those cases, the working muscles generate energy anaerobically. This energy comes from glucose through a process called glycolysis, in which glucose is broken down or metabolized into a substance called pyruvate through a series of steps. When the body has plenty of oxygen, pyruvate is shuttled to an aerobic pathway to be further broken down for more energy. But when oxygen is limited, the body temporarily converts pyruvate into a substance called lactate, which allows glucose breakdown--and thus energy production--to continue. The working muscle cells can continue this type of anaerobic energy production at high rates for one to three minutes, during which time lactate can accumulate to high levels.

 

A side effect of high lactate levels is an increase in the acidity of the muscle cells, along with disruptions of other metabolites. The same metabolic pathways that permit the breakdown of glucose to energy perform poorly in this acidic environment. On the surface, it seems counterproductive that a working muscle would produce something that would slow its capacity for more work. In reality, this is a natural defense mechanism for the body; it prevents permanent damage during extreme exertion by slowing the key systems needed to maintain muscle contraction. Once the body slows down, oxygen becomes available and lactate reverts back to pyruvate, allowing continued aerobic metabolism and energy for the body’s recovery from the strenuous event.

 

Contrary to popular opinion, lactate or, as it is often called, lactic acid buildup is not responsible for the muscle soreness felt in the days following strenuous exercise. Rather, the production of lactate and other metabolites during extreme exertion results in the burning sensation often felt in active muscles, though which exact metabolites are involved remains unclear. This often painful sensation also gets us to stop overworking the body, thus forcing a recovery period in which the body clears the lactate and other metabolites.

 

Researchers who have examined lactate levels right after exercise found little correlation with the level of muscle soreness felt a few days later. This delayed-onset muscle soreness, or DOMS as it is called by exercise physiologists, is characterized by sometimes severe muscle tenderness as well as loss of strength and range of motion, usually reaching a peak 24 to 72 hours after the extreme exercise event.

 

Though the precise cause of DOMS is still unknown, most research points to actual muscle cell damage and an elevated release of various metabolites into the tissue surrounding the muscle cells. These responses to extreme exercise result in an inflammatory-repair response, leading to swelling and soreness that peaks a day or two after the event and resolves a few days later, depending on the severity of the damage. In fact, the type of muscle contraction appears to be a key factor in the development of DOMS. When a muscle lengthens against a load--imagine your flexed arms attempting to catch a thousand pound weight--the muscle contraction is said to be eccentric. In other words, the muscle is actively contracting, attempting to shorten its length, but it is failing. These eccentric contractions have been shown to result in more muscle cell damage than is seen with typical concentric contractions, in which a muscle successfully shortens during contraction against a load. Thus, exercises that involve many eccentric contractions, such as downhill running, will result in the most severe DOMS, even without any noticeable burning sensations in the muscles during the event.

 

Given that delayed-onset muscle soreness in response to extreme exercise is so common, exercise physiologists are actively researching the potential role for anti-inflammatory drugs and other supplements in the prevention and treatment of such muscle soreness, but no conclusive recommendations are currently available. Although anti-inflammatory drugs do appear to reduce the muscle soreness--a good thing--they may slow the ability of the muscle to repair the damage, which may have negative consequences for muscle function in the weeks following the strenuous event.

Posted (edited)

10 THINGS YOU SHOULD KNOW ABOUT LACTIC ACID: OLD MYTHS AND NEW REALITIES, by Thomas Fahey, Ed.D., Professor of Exercise Physiology, California State University at Chico

 

Lactic acid has a bad reputation. Many people blame it for fatigue, sore muscles, and cramps. They think of it as a waste product that should be avoided at all cost. Guess what? Scientists have discovered that lactic acid plays a critical role in generating energy during exercise. Far from being the bad boy of metabolism, lactic acid provides fuels for many tissues, helps use dietary carbohydrates, and serves as fuel for liver production of glucose and glycogen. In fact, lactic acid is nature's way of helping you survive stressful situations.

 

Lactic acid has a dark side. When your body makes lactic acid, it splits into lactate ion (lactate) and hydrogen ion. Hydrogen ion is the acid in lactic acid. It interferes with electrical signals in your muscles and nerves, slows energy reactions, and impairs muscle contractions. The burn you feel in intense exercise is caused by hydrogen ion buildup. So, when you fatigue, don't blame it on lactic acid. Rather, place the blame where it belongs- on hydrogen ion.

 

Lactate has been made guilty by association. Far from being a metabolic pariah, the body loves lactate. It is an extremely fast fuel that's preferred by the heart and muscles during exercise. Lactate is vital for ensuring that your body gets a steady supply of carbohydrates, even during exercise that lasts for many hours. Lactate is so valuable, that taking it as part of a fluid replacement drink before, during, or after exercise improves performance and speeds recovery.

 

Lactate is a friend to triathletes, distance runners, swimmers, and cyclists. When you learn the facts about lactic acid, you will think of it in a whole new light. Harness the power of lactic acid and you will increase your energy level and stave off fatigue.

Here are ten things you should know about lactic acid:

 


1. Lactic acid is formed from the breakdown of glucose.
During this process the cells make ATP (adenosine triphosphate), which provides energy for most of the chemical reactions in the body. Lactic acid formation doesn't use oxygen, so the process is often called anaerobic metabolism. Lactate-related ATP production is small but very fast. This makes it ideal for satisfying energy needs anytime exercise intensity exceeds 50% of maximum capacity.

 

2. Lactic acid doesn't cause muscle soreness and cramps.
Delayed onset muscle soreness, the achy sensation in your muscles the day after a tough workout, is caused by muscle damage and post-exercise tissue inflammation. Most muscle cramps are caused by muscle nervous receptors that become overexcitable with muscle fatigue.

Many athletes use massage, hot baths, and relaxation techniques to help them rid their muscles of lactic acid and thus relieve muscle soreness and cramping. While these techniques probably have other benefits, getting rid of lactic acid isn't one of them. Lactate is used rapidly for fuel during exercise and recovery and doesn't remain in the muscles like motor oil.

 

3. The body produces lactic acid whenever it breaks down carbohydrates for energy.
The faster you break down glucose and glycogen the greater the formation of lactic acid. At rest and submaximal exercise, the body relies mainly on fats for fuel. However, when you reach 50% of maximum capacity, the threshold intensity for most recreational exercise programs, the body "crosses over" and used increasingly more carbohydrates to fuel exercise. The more you use carbohydrates as fuel, the more lactic acid you produce.

 

4. Lactic acid can be formed in muscles that are receiving enough oxygen.
As you increase the intensity of exercise, you rely more and more on fast-twitch muscle fibers. These fibers use mainly carbohydrates to fuel their contractions. As discussed, whenever you break down carbohydrates for energy, your muscles produce lactic acid. The faster you go, the more fast-twitch muscles you use. Consequently, you use more carbohydrates as fuel and produce more lactic acid. Increased blood lactic acid means only that the rate of entry of lactic acid into the blood exceeds the removal rate. Oxygen has little to do with it.

5. Many tissues, particularly skeletal muscles, continuously produce and use lactic acid.
Blood levels of lactic acid reflect the balance between lactic acid production and use. An increase in lactic acid concentration does not necessarily mean that the lactic acid production rate was increased. Lactic acid may increase because of a decreased rate of removal from blood or tissues.

 

Lactic acid production is proportional to the amount of carbohydrates broken down for energy in the tissues. Whenever you use carbohydrates, a significant portion is converted to lactate. This lactate is then used in the same tissues as fuel, or it is transported to other tissues via the blood stream and used for energy. Rapid use of carbohydrate for fuel, such as during intense exercise, accelerates lactic acid produciton. Temporarily, lactic acid builds up in your muscles and blood because it can't be used as fuel fast enough. However, if you slow down the pace of exercise or stop exercising, the rate of lactate used for energy soon catches up with the rate of lactate production.

 

Dr. George Brooks, a Professor from the Department of Integrative Biology at University of California at Berkeley, described the dynamic production and use of lactic acid in metabolism in his "Lactate Shuttle Theory." This theory describes the central role of lactic acid in carbohydrate metabolism and it's importance as a fuel for metabolism.

 

6. The body uses lactic acid as a biochemical "middleman" for metabolizing carbohydrates.
Carbohydrates in the diet are digested and enter the circulation form the intestines to the liver mainly in the form of glucose (blood sugar). However, instead of entering the liver as glucose and being converted directly to glycogen, most glucose from dietary carbohydrate bypasses the liver, enters the general circulation and reaches your muscles and converts into lactic acid. Lactic acid then goes back into the blood and travels back to the liver where it is used as building blocks for making liver glycogen. Your body produces much of its liver glycogen indirectly from lactic acid rather than directly from blood glucose.

 

Scientists call the process of making liver glycogen from lactic acid the "Glucose Paradox". The theory was formulated by famous biochemist Dr. J.D. McGarry and his associates. It shows the importance of lactic acid in carbohydrate metabolism.

 

7. During endurance races, such as marathons and triathlons, blood lactic acid levels stabilize even though lactic acid production increases.
This occurs because your capacity to produce lactic acid is matched by your ability to use it as fuel. Early during a race, there is a tremendous increase in the rates that muscle uptake and use glucose and breakdown glycogen. The increased rate of carbohydrate metabolism steps up production of muscle lactic acid, which also causes an increase in blood lactic acid.

 

As your body directs blood to your working muscles, you can shuttle the lactate to other tissues and use it as fuel. This reduces lactic acid levels in your muscles and blood, even though you continue to produce great quantities of lactic acid. However, you often feel better during the race or training. This relief is sometimes called "second wind".

Scientists use radioactive tracers to follow the use pattern of fuels in your blood and muscles. Their studies show that during exercise, lactic acid production and removal continue at 300-500 percent of resting rates, even though oxygen consumption has stabilized at submaximal levels.

 

8. The heart, slow-twitch muscle fibers, and breathing muscles prefer lactate as a fuel during exercise.
In the heart, for example, the uptake of lactate increases many fold as the intensity of exercise increases while uptake of glucose remains unchanged. These tissues suck up lactate at a fast rate to satisfy their energy needs.

 

9. Lactic acid is a very fast fuel that can be used to athletes' advantage during exercise.
The concentration of both glucose and lactic acid rise in the blood after a carbohydrate-rich meal, but the blood lactic acid concentration does not rise much because it is removed so rapidly. The body converts glucose, a substance removed from the blood only sluggishly, to lactate, a substance removed and used rapidly. Using lactic acid as a carbohydrate "middleman" helps you get rid of carbohydrates from your diet, without increasing insulin or stimulating fat synthesis. During exercise, you won't want an increase in insulin because it decreases the availability of carbohydrates that are vital to high performance metabolism.

 

Why is lactic acid so important in metabolic regulation? The exact answer is unknown, but there do appear to be several physiological reasons. Lactic acid- in contrast to glucose and other fuels- is smaller and better exchanged between tissues. It moves across cell membranes by a rapid process called facilitated transport. Other fuels need slower carrier systems such as insulin. Also, lactate is made rapidly in large quantities in muscle and released into general circulation. Muscle cells with large glycogen reserves cannot release significant amounts of this potential energy source as glucose because muscle lacks a key enzyme required to produce free glucose that can be released to the blood.

 

Including lactate as part of a fluid replacement beverage provides a rapid fuel that can help provide energy during intense exercise. The rationale for including lactate in athletic drinks is simple- since the body breaks down so much of dietary carbohydrates to lactate anyway, why not start with lactate in the first place? Lactate in the drink can be used rapidly by most tissues in the body and serves as readily available building blocks for restoring liver glycogen during recovery.

 

10. Proper training programs can speed lactic acid removal from your muscles.
This can be achieved by combining high intensity, interval, and over-distance training. Athletes and coaches must learn to deal effectively with lactic acid. Fortunately, most training programs incorporate elements necessary to speed lactate removal. Training programs should build your capacity to remove lactic acid during competition.

 

Lactic acid formation and removal rates increase as you run, bike or swim faster. To improve your capacity to use lactate as a fuel during exercise, you must increase the lactic acid load very high during training. Training with a lot of lactic acid in your system stimulates your body to produce enzymes that speed the use of lactic acid as a fuel.

 

High intensity interval training will cause cardiovascular adaptations that increase oxygen delivery to your muscles and tissues. Consequently, you have less need to breakdown carbohydrate to lactic acid. Also, better circulation helps speed the transport of lactic acid to tissues that can remove it from the blood.

 

Over distance training causes muscular adaptations that speed the rate of lactate removal. Over distance training in running, swimming, or cycling increases muscle blood supply and the mitochondrial capacity. Mitochondria are structures within the cells that process fuels, consume oxygen, and produce large amounts of ATP. A larger muscle mitochondrial capacity increases the use of fatty acids as fuel, which decreases lactate formation and speeds its removal.

 

Nutrition is also important, strenuous training depletes glycogen reserves in the muscle and liver. A diet high in carbohydrates is essential for all endurance athletes. Carbohydrates supply an immediate source of glucose so the athlete has a feeling of well-being and a source of quick energy. Further, glucose is used to restore muscle glycogen from exercise. When the blood glucose and muscle glycogen reserves are renewed, glucose provides a source of lactate that helps replenish liver glycogen.

 

Summary

Lactic acid is an important fuel for the body during rest and exercise. It is used to synthesize liver glycogen and is one of our most important energy sources. Lactate is the preferred fuel source in highly oxidative tissues, such as heart muscle and slow-twitch skeletal muscle fibers. It is used rapidly by the body and is a valuable component in athletic fluid replacement beverages.

 

Lactic acid also is a powerful organic acid, and its accumulation can cause distress and fatigue during exercise. Athletes need both high intensity and over-distance training to improve the capacity to use lactic acid as a fuel during exercise and recovery. High intensity training develops cardiovascular capacity that reduces lactic acid transport to tissues that can use it as fuels. Over distance training causes tissue enzymes adaptations that increase use of fatty acids for energy. This helps slow lactic acid production from carbohydrates and to enhance tissues ability to use lactic acid as fuel.

 

 

References

Ahlborg G., Felig P. Lactate and glucose exchange across the forearm, legs and splanchnic bed during and after prolonged leg exercise. J. Clin. Invest. 69: 45-54. 1982.

Ahlborg G., Wahren J., Felig R. Splanchnic and peripheral glucose and lactate metabolism during and after prolonged arm exercise. J. Clin. Invest. 77: 690-699, 1986.

Brooks G.A., Fahey T.D., White T. Exercise Physiology: Human Bioenergetics and Its Applications. Mt. View, CA: Mayfield Publishing Co., 1985.

Brooks, G.A. Lactate production under fully aerobic conditions. The lactate shuttle during rest and exercise. Fed. Proc. 45: 2924-2929, 1986.

Brooks, G.A. Mammalian fuel utilization during sustained exercise. Comp. Biochem. Physiol. 120: 89-107, 1998.

Brooks, G.A., Mercier J. The balance of carbohydrate and lipid utilization during exercise: the crossover concept (brief review). J. Appl. Physiol. 80: 2253-2261, 1994.

Brooks, G.A. and Trimmer J.K. Glucose kinetics during high-intensity exercise and the crossover concept. J. Appl. Physiol. 80: 1073-1074, 1996.

Donovan C.M., Brooks G.A. Endurance training affects lactate clearance, not lactate production. Am. J. Physiol. 244: E83-E92, 1983.

Hultman E.A. Fuel selection muscle fiber. Proc. Nutr. Soc. 54: 107-121, 1995.

Zinker B.A., Wilson R.D., Wasserman D.H. Interaction of decreased arterial PO2 and exercise on carbohydrate metabolism in the dog. Am. J. Physiol. 269: E409-E417, 1995.

Edited by Simon Kolin
Posted

My opinion is that you train too hard too often. Ride softer on your recovery rides or rest. You're not going to get stronger by going beyond threshold every day.

Posted

i put some l-glutamine in my waterbottle which apparently helps to utilise my protein intake (after ride meal) which rebuilds my muscles. that and a jump in the pool after a ride do me wonders.

Posted

My opinion is that you train too hard too often. Ride softer on your recovery rides or rest. You're not going to get stronger by going beyond threshold every day.

 

I reckon this too... My problem is that im the slowest in my bunch and struggle to stay up. But i guess will have to do some solo rides then. Is it best to do the intensity ride on the long ride or short?

Posted

Thanks for all info! Gonna try balance recovery and supplements.

 

I read somewhere that you're lactic acid threshold can be determined in a lab, and can be useful to train up-to that point only. Anyone done this? Is there a less scientific way to know how hard is too much?

Posted

 

 

I reckon this too... My problem is that im the slowest in my bunch and struggle to stay up. But i guess will have to do some solo rides then. Is it best to do the intensity ride on the long ride or short?

 

There are several approaches, witte...

A conventional approach is to break up your long ride into 3 thirds - easy, harder, hardest segments.

 

Of course, doing shorter hard rides are very useful. Hill repeats and sprints from pole to pole.

Intervals. Intervals.

Do some reading and you'll find many variations.

Posted

I reckon this too... My problem is that im the slowest in my bunch and struggle to stay up. But i guess will have to do some solo rides then. Is it best to do the intensity ride on the long ride or short?

Thanks for all info! Gonna try balance recovery and supplements.

 

I read somewhere that you're lactic acid threshold can be determined in a lab, and can be useful to train up-to that point only. Anyone done this? Is there a less scientific way to know how hard is too much?

 

Not sure exactly on what training level you are in terms of time, effort, etc., but it seems better training would be much better than trying to take shortcuts with supplements and the like. Do you have a heart rate monitor? If you want you can PM me your training for the last month and I can try to help out with ideas and opinions.

Posted

Hey, anyone got advice how to get rid of some serious lactic acid build-up? Went to the physio a while back, who recommended regular massage and magnesium supplement. However as i train harder, i get stuck again.. Should i take more magnesium? Something different?

Why does lactic acid build up in muscles? And why does it cause soreness?

Stephen M. Roth, a professor in the department of kinesiology at the University of Maryland, explains.

 

As our bodies perform strenuous exercise, we begin to breathe faster as we attempt to shuttle more oxygen to our working muscles. The body prefers to generate most of its energy using aerobic methods, meaning with oxygen. Some circumstances, however, --such as evading the historical saber tooth tiger or lifting heavy weights--require energy production faster than our bodies can adequately deliver oxygen. In those cases, the working muscles generate energy anaerobically. This energy comes from glucose through a process called glycolysis, in which glucose is broken down or metabolized into a substance called pyruvate through a series of steps. When the body has plenty of oxygen, pyruvate is shuttled to an aerobic pathway to be further broken down for more energy. But when oxygen is limited, the body temporarily converts pyruvate into a substance called lactate, which allows glucose breakdown--and thus energy production--to continue. The working muscle cells can continue this type of anaerobic energy production at high rates for one to three minutes, during which time lactate can accumulate to high levels.

 

A side effect of high lactate levels is an increase in the acidity of the muscle cells, along with disruptions of other metabolites. The same metabolic pathways that permit the breakdown of glucose to energy perform poorly in this acidic environment. On the surface, it seems counterproductive that a working muscle would produce something that would slow its capacity for more work. In reality, this is a natural defense mechanism for the body; it prevents permanent damage during extreme exertion by slowing the key systems needed to maintain muscle contraction. Once the body slows down, oxygen becomes available and lactate reverts back to pyruvate, allowing continued aerobic metabolism and energy for the body’s recovery from the strenuous event.

 

Contrary to popular opinion, lactate or, as it is often called, lactic acid buildup is not responsible for the muscle soreness felt in the days following strenuous exercise. Rather, the production of lactate and other metabolites during extreme exertion results in the burning sensation often felt in active muscles, though which exact metabolites are involved remains unclear. This often painful sensation also gets us to stop overworking the body, thus forcing a recovery period in which the body clears the lactate and other metabolites.

 

Researchers who have examined lactate levels right after exercise found little correlation with the level of muscle soreness felt a few days later. This delayed-onset muscle soreness, or DOMS as it is called by exercise physiologists, is characterized by sometimes severe muscle tenderness as well as loss of strength and range of motion, usually reaching a peak 24 to 72 hours after the extreme exercise event.

 

Though the precise cause of DOMS is still unknown, most research points to actual muscle cell damage and an elevated release of various metabolites into the tissue surrounding the muscle cells. These responses to extreme exercise result in an inflammatory-repair response, leading to swelling and soreness that peaks a day or two after the event and resolves a few days later, depending on the severity of the damage. In fact, the type of muscle contraction appears to be a key factor in the development of DOMS. When a muscle lengthens against a load--imagine your flexed arms attempting to catch a thousand pound weight--the muscle contraction is said to be eccentric. In other words, the muscle is actively contracting, attempting to shorten its length, but it is failing. These eccentric contractions have been shown to result in more muscle cell damage than is seen with typical concentric contractions, in which a muscle successfully shortens during contraction against a load. Thus, exercises that involve many eccentric contractions, such as downhill running, will result in the most severe DOMS, even without any noticeable burning sensations in the muscles during the event.

 

Given that delayed-onset muscle soreness in response to extreme exercise is so common, exercise physiologists are actively researching the potential role for anti-inflammatory drugs and other supplements in the prevention and treatment of such muscle soreness, but no conclusive recommendations are currently available. Although anti-inflammatory drugs do appear to reduce the muscle soreness--a good thing--they may slow the ability of the muscle to repair the damage, which may have negative consequences for muscle function in the weeks following the strenuous event.

thumbup1.gif

 

Lactic acid is actually fuel for your muscles, and is flushed out in a relatively short time after exercise stops. Something like an hour or so.

 

You might be referring to stiff and soreness from going to hard / doing too much (DOMS as stated above) - I've had it set in within 12 hours after my last hard effort - cumulative effort was to blame . For DOMS the only real solution is to rest. Eat properly after exercise to allow your body to heal any exercise induced damage to muscle fibres (there ALWAYS is!).

 

Rather build up your training intensity / volume over time. Do NOT let your ego get in the way of your training, so go ride with a slower group / solo for a while. Remember to take rest days (passive not active if you are new to cycing) regularly - at least once a week.

 

For most of us the mantra should be to train slow but frequently, and race hard! (even short if you still building up your strength/fitness!)

  • 2 weeks later...
Posted

Biggest mistake I see when doing lactate tests on athletes is the tendancy for the athlete to be doing their easy stuff to hard and their hard stuff too easy.

 

This is often because they overestimate their own perceived effort / HR / Load at threshold which means they spend too long training at one intensity, and consequently they do not get the benifits of easy rides and are often not suffeciently recovered to effectively do real power work when trying to do that.

 

Lactate testing is one way of determinig very clearly where your "zones" actually are and establishing correct training intensities based on that.

Create an account or sign in to comment

You need to be a member in order to leave a comment

Create an account

Sign up for a new account. It's easy!

Register a new account

Sign in

Already have an account? Sign in here.

Sign In Now
Settings My Forum Content My Followed Content Forum Settings Ad Messages My Ads My Favourites My Saved Alerts My Pay Deals Help Logout